AOJ 2372 - IkaNumber
問題文 : IkaNumber
解法 :
数列の並びを見るとすべて差がfibonacci になっているのが分かる. このpdf の途中に出てくる不等式をそのまま使えば良い.
コード :
#include <cstdio> #include <algorithm> #include <vector> using namespace std; typedef long long lint; #define MOD (1000000007) typedef vector<lint> vec; typedef vector<vec> matrix; matrix mul(matrix &A, matrix &B) { matrix C(A.size(), vec(B[0].size())); for (int i = 0; i < A.size(); i++){ for (int j = 0; j < B[0].size(); j++){ for (int k = 0; k < A[0].size(); k++){ C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD; } } } return (C); } lint f(lint n) { matrix A(2, vec(2)); A[0][0] = 1, A[0][1] = 1; A[1][0] = 1, A[1][1] = 0; matrix B(A.size(), vec(A.size())); for (int i = 0; i < A.size(); i++){ B[i][i] = 1; } while (n > 0){ if (n & 1){ B = mul(B, A); } A = mul(A, A); n >>= 1; } return (B[1][0]); } int main() { lint n; scanf("%lld", &n); lint lo = 1, hi = 2000000000; while (lo != hi){ lint mid = (lo + hi) / 2; lint no = (mid / 2) * (mid / 2 + 1); if (mid & 1) no += (mid + 1) / 2; if (no < n) lo = mid + 1; else hi = mid; } lint s = ((lo - 1) / 2) * ((lo - 1) / 2 + 1); if ((lo - 1) & 1) s += lo / 2; lint pos = n - s - 1, rev = (lo - 1) / 2 - pos + 1; if (lo - pos * 2 + 1 >= (pos + 1) * 2) printf("%lld\n", f(lo - pos * 2 + 1) * f((pos + 1) * 2) % 1000000007); else printf("%lld\n", f(rev * 2 + 1) * f(lo - rev * 2 + 2) % 1000000007); return (0); }